The Exp.#=[{(x-a)(x+a)+2a^2}/(x+a)]*[(a^2-x^2)/(x^2a^2)]-:[x^3-{(a(x^3+a^3))/(x+a)}],#
#=[{(x^2-a^2)+2a^2}/(x+a)]*[{(a+x)(a-x)}/(x^2a^2)]-:[x^3-{a(x+a)(x^2-xa+a^2)}/(x+a)],#
#=(x^2+a^2)*{(a-x)/(x^2a^2)}-:[x^3-a(x^2-xa+a^2)],#
#={(x^2+a^2)(a-x)}/(x^2a^2)-:{x^3-ax^2+xa^2-a^3},#
#={(x^2+a^2)(a-x)}/(x^2a^2)-:{(x^3-a^3)-xa(x-a)},#
#={(x^2+a^2)(a-x)}/(x^2a^2)-:{(x-a)(x^2+xa+a^2)-xa(x-a)},#
#={(x^2+a^2)(a-x)}/(x^2a^2)-:{(x-a)(x^2+xa+a^2-xa)},#
#={(x^2+a^2)(a-x)}/(x^2a^2)-:{(x-a)(x^2+a^2)},#
#={(x^2+a^2)(a-x)}/(x^2a^2)xx1/{-(a-x)(x^2+a^2)},#
# rArr" The Exp.="-1/(x^2a^2).#
Enjoy Maths.!