How do you simplify #-y^2(3y-5)#?

1 Answer
Oct 10, 2015

Answer:

#-y^2(3y-5)=color(green)(-3y^3 + 5y^2#

Explanation:

#color(blue)(a*(b-c) = a*b - a*c# ---- (Distributive Property)

Applying it to the given expression,
#-y^2(3y-5) = -y^2(3y) - (-y^2)(5)#

We also know that #color(blue)(a^m*a^n = a^(m+n)#

Hence the expression will be:

#-3y^(2+1) + 5y^2#

#=color(green)(-3y^3 + 5y^2#