How do you solve #0=3x^2-2x-12# by completing the square?

2 Answers
May 16, 2015

In general #ax^2+bx+c = a(x+b/(2a))^2+(c-b^2/(4a))#

For your problem, #a=3#, #b=-2# and #c=-12#, so we get

#0 = ax^2+bx+c = 3x^2 - 2x - 12#

#= 3(x+(-2)/(2*3))^2+(-12-(-2)^2/(4*3))#

#= 3(x-2/6)^2-(12+4/12)#

#= 3(x-1/3)^2-(12+1/3)#

#= 3(x-1/3)^2-37/3#

Adding #37/3# to both sides we get

#3(x-1/3)^2 = 37/3#

Dividing both sides by 3 we get

#(x-1/3)^2 = 37/(3^2)#

Hence

#x-1/3 = +- sqrt(37/3^2) = +- sqrt(37)/3#

Adding 1/3 to both sides, we get

#x = 1/3 +- sqrt(37)/3 = (1 +- sqrt(37))/3#

May 16, 2015

If #3x^2-2x-12 = 0#
then
#x^2-2/3x -4 = 0#

isolate the constant
#x^2-2/3x = 4#

complete the square
#x^2 - 2/3x + (1/3)^2 = 4 + (1/3)^2#

#(x-1/3)^2 = 37/9#

take the square root
#x-1/3 = +-sqrt(37)/3#

simplify
#x= (1+-sqrt(37))/3#