How do you solve #1+sinx=2cos^2x# in the interval #0<=x<=2pi#?

1 Answer
Jul 26, 2016

Based on two different cases: #x = pi/6, (5pi)/6 or (3pi)/2#

Look below for the explanation of these two cases.

Explanation:

Since, #cos^ x + sin^2 x = 1#
we have: #cos^2 x = 1 - sin^2 x#

So we can replace #cos^2 x# in the equation #1 + sinx = 2cos^2x# by #(1- sin^2 x)#

#=>2 (1 - sin^2 x) = sin x +1#

or, #2 - 2 sin^2 x = sin x + 1#

or, #0=2sin ^2 x + sin x + 1 - 2#

or, #2sin ^2 x + sin x - 1 = 0#

using the quadratic formula:

#x = (-b+-sqrt(b^2 - 4ac))/(2a)# for quadratic equation #ax^2+bx+c=0#

we have:

#sin x = (-1+-sqrt(1^2 - 4*2*(-1)))/(2*2)#

or, #sin x = (-1+-sqrt(1 + 8))/4#

or, #sin x = (-1+-sqrt(9))/4#

or, #sin x = (-1+-3)/4#

or, #sin x = (-1+3)/4, (-1-3)/4#

or, #sin x = 1/2, -1#

Case I:

#sin x = 1/2#

for the condition: #0<=x<=2pi#

we have:

#x= pi/6 or (5pi)/6# to get positive value of #sinx#

Case II:

#sin x = -1#

we have:

#x= (3pi)/2# to get negative value of #sinx#