How do you solve #1/((x - 1)(x - 2)) + 1/((x - 2)(x - 3) )+ 1/((x - 3)(x - 4)) = 1/6#?
1 Answer
Explanation:
Given:
#1/((x-1)(x-2))+1/((x-2)(x-3))+1/((x-3)(x-4)) = 1/6#
Multiply through by
#6(x-3)(x-4)+6(x-1)(x-4)+6(x-1)(x-2) = (x-1)(x-2)(x-3)(x-4)#
Multiply out:
#6(x^2-7x+12)+6(x^2-5x+4)+6(x^2-3x+2) = x^4-10x^3+35x^2-50x+24#
#18x^2-90x+108 = x^4-10x^3+35x^2-50x+24#
Subtract the left hand side from the right to get:
#x^4-10x^3+17x^2+40x-84 = 0#
By the rational root theorem, any rational zeros of this polynomial must be expressible in the form
That means that the only possible rational roots are:
#+-1# ,#+-2# ,#+-3# ,#+-4# ,#+-6# ,#+-7# ,#+-12# ,#+-14# ,#+-21# ,#+-28# ,#+-42# ,#+-84#
Substituting
#x^4-10x^3+17x^2+40x-84 = 16-80+68+80-84 = 0#
So
#x^4-10x^3+17x^2+40x-84 = (x-2)(x^3-8x^2+x+42)#
Substituting
#x^3-8x^2+x+42 = -8-32-2+42 = 0#
So
#x^3-8x^2+x+42 = (x+2)(x^2-10x+21)#
To factor and find the zeros of the remaining quadratic, note that
#x^2-10x+21 = (x-3)(x-7)#
So the remaining zeros are
So all the zeros of our quartic polynomial are:
#-2, 2, 3, 7#
Note that the values
So the solutions of the original rational equation are