How do you solve #(10)/(x^2-2x)=4/x=5/(x-2)#?

1 Answer
May 12, 2017

First, we must change the denominators to become the same
( common denominator )

The first thing to do is to expand all the denominators, to fully see the components of the fractions.
#10/(x(x-2))=4/x=5/(x-2)#

If we multiply #4/x# by #(x-2)/(x-2)#, and #5/(x-2)# by #x/x#, then all three fractions will have the common denominator of #x(x-2)#:

#(10)/(x(x-2))=(4(x-2))/(x(x-2))=(5(x))/((x-2)(x))#

#10/(x^2-2x)=(4x-8)/(x^2-2x)=(5x)/(x^2-2x)#

multiply all fractions by #(x^2-2x)#

#cancel((x^2-2x))xx10/cancel((x^2-2x))=cancel((x^2-2x))xx(4x-8)/cancel((x^2-2x))=cancel((x^2-2x))xx(5x)/cancel((x^2-2x))#

We are left with

#10=(4x-8)=(5x)#