How do you solve #11.3^(2x – 1) = 15.7#?

1 Answer
Apr 28, 2016

I found: #x=1.0678#

Explanation:

Here I would use the natural log on both sides and one property of logs (about the exponent of the argument):

I write:

#color(red)(ln)11.3^(2x-1)=color(red)(ln)15.7#

then:

#(2x-1)ln(11.3)=ln(15.7)#

rearrange:
#2x-1=(ln(15.7))/(ln(11.3))#
#2x=(ln(15.7))/(ln(11.3))+1#
#x=[(ln(15.7))/(ln(11.3))+1]/2=1.0678#