How do you solve #2/d+1/4=11/12#?

1 Answer
Apr 4, 2016

Answer:

#d=3#

Explanation:

#1#. Subtract #color(red)(1/4)# from both sides of the equation.

#2/d+1/4=11/12#

#2/d+1/4# #color(red)(-1/4)=11/12# #color(red)(-1/4)#

#2/d=11/12-1/4#

#2#. Simplify the right side of the equation.

#2/d=11/12-(1color(red)(xx3))/(4color(red)(xx3))#

#2/d=11/12-3/12#

#2/d=(11-3)/12#

#2/d=8/12#

#3#. Divide both sides by #color(red)(8/12)#.

#2/dcolor(red)(-:8/12)=8/12color(red)(-:8/12)#

#2/d##xx12/8=8/12xx12/8#

#color(darkorange)cancelcolor(black)2^1/d##xx12/color(darkorange)cancelcolor(black)8^4=color(red)cancelcolor(black)8^1/color(teal)cancelcolor(black)12^1xxcolor(teal)cancelcolor(black)12^1/color(red)cancelcolor(black)8^1#

#12/(4d)=1#

#4#. Solve for #d#.

#(12color(red)(-:4))/(4dcolor(red)(-:4))=1#

#3/d=1#

#color(green)(|bar(ul(color(white)(a/a)d=3color(white)(a/a)|)))#