How do you solve #2\sin x - \cos x = \frac { 3} { \sqrt { 2} }#?

1 Answer
Nov 23, 2017

#x=180^@xxn+(-1)^n71.565^@+26.565^@#, where #n# is an integer.

Explanation:

#2sinx-cosx=3/sqrt2#

#hArrsqrt5(sinx xx2/sqrt5-cosx xx 1/sqrt5)=3/sqrt2#

Let #sinalpha=1/sqrt5# where #alpha# is in #Q1#, observe that then #cosalpha=2/sqrt5# and #tanalpha=1/2# and #alpha=tan^(-1)(1/2)=tan26.565^@#

and our equation becomes

#sin(x-alpha)=3/sqrt10=0.9486833=sin71.565^@#

i.e. #x-26.565^@=180^@xxn+(-1)^n71.565^@#, where #n# is an integer.

i.e. #x=180^@xxn+(-1)^n71.565^@+26.565^@#

and in #[0,2pi)#, #x=98.13^@# or #135^@# (for #n=0" and "1#.