# How do you solve 2\times ( 14-: 2)^{2} + 5\times 12?

Sep 21, 2016

$158$

#### Explanation:

Always count the number of terms first.
Simplify each term, following the order of operations - brackets first,
the strongest to weakest :
Powers and roots, then multiply and divide.
Each term will simplify to a single number which are added or subtracted in the last step.

$\left[2 \times {\textcolor{red}{\left(14 \div 2\right)}}^{2}\right] \textcolor{b l u e}{+ 5 \times 12} \text{ } \leftarrow$ there are 2 terms

=$\left[2 \times \textcolor{red}{{\left(7\right)}^{2}}\right] \textcolor{w h i t e}{\times \times x} \textcolor{b l u e}{+ 60} \text{ } \leftarrow$ keep them separate

=$\text{ } \textcolor{red}{2 \times 49} \textcolor{w h i t e}{\times \times . x} \textcolor{b l u e}{+ 60}$

=$\textcolor{w h i t e}{\times x} \textcolor{red}{98} \textcolor{w h i t e}{\times \times \times . x} \textcolor{b l u e}{+ 60} \text{ } \leftarrow$ now add

=$\text{ } 158$

Sep 21, 2016

158

#### Explanation:

work:
2 x ${\left(\frac{14}{2}\right)}^{2}$ + 5 x 12
2 x ${\left(7\right)}^{2}$+ 5 x 12
2 x (49) + 5 x 12
98 + 60
158

Sep 21, 2016

158

#### Explanation:

When dealing with a calculation involving ' mixed' operations we can use the acronym PEMDAS.

P-"Parenthesis"to("brackets")

$E - \text{Exponents"to"powers}$

$M - \text{Multiplication}$

$D - \text{Division}$

multiplication and division are of equal precedence.

$A - \text{Addition}$

$S - \text{Subtraction}$

Following this order on the given calculation.

$2 \times {\left(\textcolor{red}{7}\right)}^{2} + 5 \times 12$

$= 2 \times \textcolor{b l u e}{49} + 5 \times 12$

$= \left(\textcolor{m a \ge n t a}{2 \times 49}\right) + \left(\textcolor{m a \ge n t a}{5 \times 12}\right)$

$= 98 + 60 = 158$