How do you solve #2^(x+1) = 3^x#?

1 Answer
Jan 23, 2016

#xapprox1.7093#

Explanation:

#2^(x+1)=3^x#
Taking log of both sides
#log2^(x+1)=log3^x#
#implies (x+1)log2=xlog3#
#implies (x+1)xx0.3010=x xx0.4771#
Rearranging we get
# (-0.3010+0.4771)x=0.3010#
#implies x=0.3010/(0.4771-0.3010)#

#xapprox1.7093#