How do you solve #-2(x-4)=15#?

1 Answer
Jul 13, 2015

Answer:

#x=7/(-2)#

Explanation:

We are given #-2(x-4)=15#

First, let's multiply the #-2# into what's inside the parenthesis:

#-2(x-4)=15#

#-2x-4*(-2)=15#

#-2x+8=15#

Now, let's subtract #8# from both sides:

#-2x+8=15#

#-2x=15-8#

#-2x=7#

Now, just divide both sides by #-2#

#-2x=7#

#x=7/(-2)#

Let's check and see if our answer is correct
by plugging in #x=7/(-2)# into #-2(x-4)=15#

#-2(x-4)=15#

#-2(-7/2-4)=15#

#-2(-7/2-8/2)=15#

#-2(-15/2)=15#

#15=15#