How do you solve #2^ { x } \cdot 3^ { 2x - 1} = 5^ { x + 1}#?

1 Answer
Jul 5, 2017

#x==2.1141#

Explanation:

Taking logarithm (base10) on both sides of #2^x*3^(2x-1)=5^(x+1)#, we get

#xlog2+(2x-1)log3=(x+1)log5#

or #x(log2+2log3-log5)=log5+log3#

or #xlog((2*3^2)/5)=log15#

or #xlog3.6=log15#

or #x=log15/log3.6=1.1761/0.5563=2.1141#