How do you solve #2cos^2(2x)+cos(2x)-1=0 #?
1 Answer
Mar 17, 2016
for any integer
Explanation:
Let
#2y^2 + y - 1 = 0#
Factorize to find the zeroes.
#(2y - 1) * (y + 1) = 0#
This means that
Now change back
So we get
#cos(2x) = 1/2# or
#cos(2x) = -1#
Next we find the basic angles.
#cos^{-1}(1/2) = pi/3#
#cos^{-1}(-1) = pi#
With that, we solve
#2x = pi/3 + 2kpi or {2pi}/3 + 2kpi# ,
for any integer
#x = pi/6 + kpi or pi/3 + kpi#
Now, we solve
#2x = pi + 2kpi# ,
for any integer
#x = pi/2 + kpi#
Combining the solution gives
#x = pi/6 + kpi or pi/3 + kpi or pi/2 + kpi# ,
for any integer