How do you solve #2sin^2x+7sinx=4# in the interval [0,360]?

1 Answer
Dec 14, 2016

#x in {30^@, 150^@, 194.48^@,345.52^@)#

Explanation:

Given
#color(white)("XXX")2sin^2(x)+7sin(x)=4#
Rearranging into standard quadratic form:
#color(white)("XXX")2sin^2(x)+7sin(x)-4=0#
Factoriing:
#color(white)("XXX")(2sin(x)-1)(sin(x)+4)=0#
#rarr#
#color(white)("XXX"){: (sin(x)=1/2," or ",sin(x)=-1/4), ("in the range",[0,360^@],), (x=30^@" or "150^@,,x~~194.48^@" or "345.52^@) :}#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Note: #x# is one of the standard angles for #sin(x)=1/2#;
but I needed to use a calculator for #arcsin(-1/4)# to evaluate #sin(x)=-1/4#