How do you solve #2x^2-9=0# using the quadratic formula?
1 Answer
May 11, 2016
#x=sqrt72/4#
#x=-(sqrt72/4)#
Explanation:
Given -
#2x^2-9=0#
Quadratic equations normally looks like this
#ax^2+bx+c=0#
In the given equation the
We shall supply it
#2x^2+0x-9#
Then as per formula the roots are
#x=((-b)+-sqrt(b^2-4ac))/(2a)#
We shall substitute the values in the formula
#x=((-0)+-sqrt(0^2-(4xx2xx(-9))))/(2xx2)#
#x=(+-sqrt(0-(-72)))/4#
The two roots are
#x=sqrt72/4#
#x=-(sqrt72/4)#