Step 1) Add #color(red)(1/4)# to each side of the equation to isolate the #x# term while keeping the equation balanced:
#3/10x - 1/4 + color(red)(1/4) = 3 + color(red)(1/4)#
#3/10x - 0 = (4/4 xx 3) + color(red)(1/4)#
#3/10x = 12/4 + color(red)(1/4)#
#3/10x = 13/4#
Step 2) Multiply each side of the equation by #color(red)(10)/color(blue)(3)# to solve for #x# while keeping the equation balanced:
#color(red)(10)/color(blue)(3) xx 3/10x = color(red)(10)/color(blue)(3) xx 13/4#
#cancel(color(red)(10))/cancel(color(blue)(3)) xx color(blue)(cancel(color(black)(3)))/color(red)(cancel(color(black)(10)))x = (cancel(color(red)(10))5)/color(blue)(3) xx 13/(color(red)(cancel(color(black)(4)))2)#
#x = 65/6#