How do you solve #3.2(6x-7.2) = 0#?

2 Answers
Apr 21, 2018

#x=1.2#

Explanation:

  1. Apply distributive property #a(b+c)=a(b)+a(c)#
    #3.2(\color(crimson)(6x)\color(orchid)(-7.2))=0# becomes...
    #3.2(\color(crimson)(6x))+3.2(\color(orchid)(-7.2))=0#
  2. Simplify by multiplication
    #\color(crimson)(19.2x)+(\color(orchid)(-23.04))=0#
    #19.2x-23.04=0#
  3. Isolate the term with variable #x# using addition
    #19.2x\cancel(-23.04)\cancel(color(tomato)(+23.04))=0\color(tomato)(+23.04)#
    #19.2x=23.04#
  4. Isolate the variable #x# by division
    #(\cancel(19.2)x)/(\cancel(\color(lightcoral)(19.2)))=23.04/(\color(lightcoral)(19.2)#
  5. Here is your result!
    #x=1.2#
Apr 21, 2018

#x=18/15 = 1.2#

In the absence of any instruction your solution format is the same as in the question.

Explanation:

Given: #color(green)(3.2(6x-7.2)=0)#

Divide both sides by #color(red)(3.2)#

#color(green)(3.2(6x-7.2)=0color(white)("dddd")->color(white)("dddd")ubrace(3.2/color(red)(3.2)) (6x-7.2)=0/color(red)(3.2))#

#color(green)(color(white)("dddddddddddddddddd")->color(white)("ddddd")1xx( 6x-7.2)=0#

Add #color(red)(7.2)# to both sides

#color(green)(color(white)("dddd")6x-7.2=0color(white)("dddd") ->color(white)("ddddd")6xcolor(white)("d")ubrace(-7.2color(red)(+7.2)) = 0color(red)(+7.2)#

#color(green)( color(white)("dddddddddddddddddd") ->color(white)("ddddd")6xcolor(white)("d.d")+0color(white)("dddd")=7.2 )#

Divide both sides by #color(red)(6)#

#color(green)(color(white)("dddd")6x=7.2color(white)("ddddddd") ->color(white)("ddddd")6/color(red)(6) x=7.2/color(red)(6) )#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Determined that #x=7.2/6# we find the decimal to be awkward. So we 'get rid of it!

#x=(7.2xx10)/(6xx10) = 72/60 = 36/30 = 18/15#