How do you solve #- 3= 3- 4( x + 1)#?

2 Answers
May 24, 2018

#x=0.5 #

Explanation:

#-3=3-4(x+1)#

#-3-3=-4(x+1)#

#-6=-4(x+1)#

#(-6)/-4= (-4(x+1))/-4#

#1.5=x+1#

So

#1.5-1=x#

#x=0.5#

May 24, 2018

#x=1/2#

Explanation:

#-3=3-\color(red)(4(x+1))#

Let's solve the red part. Do the Distributive Property:
#-4(x+1)=-4(x)+(-4)(1)=-4x-4#

So now we have
#-3=3+[\color(red)(-4x-4)]#
#\rArr-3=3-4x-4#

Add anything without an #x# and move to the left side.
#-3=3-4-4x#
#\rArr-3=-1-4x#
#\rArr-2=-4x#

Divide to find #x#
#-2\div(-4)=x#
#1/2=x#


Check answer:
#-3\stackrel(?)(=)3-4(\color(seagreen)(1/2)+1)#
#-3\stackrel(?)(=)3-4(1/2)-4(1)#
#-3\stackrel(?)(=)3-2-4#
#-3\stackrel(?)(=)1-4#
#-3=-3\color(lightgreen)(\sqrt())#