We rewrite the inequality as
#3<=(2-x)/(x+2)#
#3-(2-x)/(x+2)<=0#
#(3(x+2)-(2-x))/(x+2)<=0#
#(3x+6-2+x)/(x+2)<=0#
#(4x+4)/(x+2)<=0#
#(4(x+1))/(x+2)<=0#
Let #f(x)=(4(x+1))/(x+2)#
We can build the sign chart
#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##-2##color(white)(aaaaa)##-1##color(white)(aaaa)##+oo#
#color(white)(aaaa)##x+2##color(white)(aaaaa)##-##color(white)(aa)##||##color(white)(aa)##+##color(white)(aaaaa)##+#
#color(white)(aaaa)##x+1##color(white)(aaaaa)##-##color(white)(aaaaa)##-##color(white)(aa)##0##color(white)(aa)##+#
#color(white)(aaaa)##f(x)##color(white)(aaaaaa)##+##color(white)(aa)##||##color(white)(aa)##-##color(white)(aa)##0##color(white)(aa)##+#
Therefore,
#f(x)<=0# when #x in (-2,-1]#
graph{3-(2-x)/(x+2) [-28.87, 28.86, -14.43, 14.44]}