How do you solve #3sinx=sinx-1#?

2 Answers
Aug 1, 2016

#x= -pi/6 + 2pi n# or #x=(7pi)/6 + 2pin# #{n in ZZ}#

Explanation:

#3sin x = sin x -1#

#2sinx =-1#

#sinx=-1/2#

#x = arcsin(-1/2)#

#x = -pi/6# for #x in (-pi,pi) or x=(7pi)/6# for #x in (pi, 2pi)#

In general: #x= -pi/6 + 2pi n# or #x=(7pi)/6 + 2pin# #{n in ZZ}#
Since the period of the #sin# function is #2pi#

Aug 1, 2016

#(7pi)/6, (11pi)/6#

Explanation:

3sin x = sin x - 1
2sin x = -1 --> #sin x = - 1/2#
Trig table of special arcs -->
#sin x = - 1/2# --> arc #x = - pi/6# or #x = (11pi)/6# (co-terminal)
Trig unit circle gives another arc that has the same sine value (-1/2):
arc #x = (7pi)/6#
Answers for #(0, 2pi)#:
#(7pi)/6 and (11pi)/6#
General answers:
#x = (7pi)/6 + 2kpi#
#x = (11pi)/6 + 2kpi#
enter image source here