How do you solve #3tan^2theta=1#?

2 Answers
Feb 10, 2017

The solutions are #S={pi/6+kpi , -pi/6+kpi}#

Explanation:

#3tan^2theta=1#

#tan^2theta=1/3#

#tantheta=+-1/sqrt3#

#tantheta=1/sqrt3#

#theta=pi/6 +kpi#, k in ZZ##

#tan theta=-1/sqrt3#

#theta=-pi/6+kpi#, #kinZZ#

Feb 10, 2017

General solution: #theta = 2npi + (pi/6) , 2n pi+( (7pi)/6) , 2npi + ((5pi)/6) , 2n pi +( (11pi)/6) # for # [n=0,1,2,3, .........]#

Explanation:

#3 tan^2 theta = 1 or tan^2 theta = 1/3 or tan theta = +- 1/sqrt 3, tan theta = 1/sqrt 3 ; tan (pi/6) = 1/sqrt 3 ; tan (pi +pi/6) = 1/sqrt 3 :. theta = (pi/6) , theta = ( (7pi)/6) #

#tan theta = -1/sqrt 3 ; tan (pi -pi/6) = -1/sqrt 3 ; tan ( 2pi -pi/6) = -1/sqrt 3 :. theta = ((5pi)/6) , theta = ( (11pi)/6) #

General solution: # theta = 2npi + (pi/6) , theta = 2n pi+( (7pi)/6) #

and # theta = 2npi + ((5pi)/6) , theta = 2n pi +( (11pi)/6) #

where #n# is a whole number as # [n=0,1,2,3, .........]# [Ans]