How do you solve #4(1 + 10^(5x) ) = 9 #?

1 Answer
Feb 9, 2016

I found: #x=0.0194#

Explanation:

Let us try to arrange it:
#1+10^(5x)=9/4#
#10^(5x)=9/4-1#
#10^(5x)=(9-4)/4#
#10^(5x)=5/4#
let us take the log in base #10# of both sides:
#log_(10)[10^(5x)]=log_(10)[5/4]#
giving:
#5x=log_(10)[5/4]#
and:
#x=(log_(10)[5/4])/5=0.0194#