# How do you solve  - 4( 2x - 1) = - 6( x + 2) - 2?

Jun 22, 2018

$x = 9$

#### Explanation:

We need to distribute the $- 4$ to the parenthesis on the left side, and the $- 6$ to the right side parenthesis. This will leave us with

$- 8 x + 4 = - 6 x - 12 - 2$

We can simplify the right side to get

$- 8 x + 4 = - 6 x - 14$

I want my variables on the left and the constants on the right. So let's start by subtracting $4$ from both sides.

$- 8 x = - 6 x - 18$

Let's add $6 x$ to both sides to get

$- 2 x = - 18$

Dividing both sides by $- 2$, we get

$x = 9$

Hope this helps!

Jun 22, 2018

$x = 9$

#### Explanation:

$\text{distribute brackets on both sides of the equation}$

$- 8 x + 4 = - 6 x - 12 - 2$

$\text{add "6x" to both sides}$

$- 8 x + 6 x + 4 = - 14$

$\text{subtract 4 from both sides}$

$- 2 x = - 14 - 4 = - 18$

$\text{divide both sides by } - 2$

$\frac{\cancel{- 2} x}{\cancel{- 2}} = \frac{- 18}{- 2} \Rightarrow x = 9$

$\textcolor{b l u e}{\text{As a check}}$

Substitute this value into the equation and if both sides are equal then it is the solution.

$\text{left } = - 4 \left(18 - 1\right) = - 4 \times 17 = - 68$

$\text{right } = - 6 \left(9 + 2\right) - 2 = - 66 - 2 = - 68$

$x = 9 \text{ is the solution}$