How do you solve #-5(2x-7)+24=89#?

1 Answer
May 5, 2017

#x=-3#

Explanation:

#" the first step is to distribute the bracket"#

#rArr-10x+35+24=89#

#rArr-10x+59=89larr" simplifying left side"#

#"subtract 59 from both sides"#

#-10xcancel(+59)cancel(-59)=89-59#

#rArr-10x=30#

#"divide both sides by - 10"#

#(cancel(-10) x)/(cancel(-10))=30/(-10)#

#rArrx=-3#

#color(blue)"As a check"#

Substitute this value into the left side of the equation and if equal to the right side then it is the solution

#-5((2xx-3)-7)+24=(-5xx-13)+24#

#=65+24=89=" right side"#

#rArrx=-3" is the solution"#