How do you solve #5- 4x + 8+ 2x + 3x - 4= 3+ 3\cdot 4#?

1 Answer
Apr 17, 2017

Answer:

See the entire solution process below:

Explanation:

First, group and combine like terms on the left side of the equation:

#-4x + 2x + 3x + 5 + 8 - 4 = 3 + 3 * 4#

#(-4 + 2 + 3)x + (5 + 8 - 4) = 3 + 3 * 4#

#1x + 9 = 3 + 3 * 4#

#x + 9 = 3 + 3 * 4#

Next, we simplify the right side of the equation by following the standard rules for the order of operator where you multiply first and then add:

#x + 9 = 3 + color(red)(3 * 4)#

#x + 9 = 3 + 12#

#x + 9 = 15#

Now, subtract #color(red)(9)# from each side of the equation to solve for #x# while keeping the equation balanced:

#x + 9 - color(red)(9) = 15 - color(red)(9)#

#x + 0 = 6#

#x = 6#