How do you solve #(5q^2)/6-q^2/3=72#?

1 Answer
Oct 27, 2016

#q=+-12#

Explanation:

The objective is to have only one #q#

notice that #q^2# is in both numerators so factor that out

#q^2(5/6-1/3)=72#

#q^2(5/6-2/6)=72#

#q^2((cancel(3)^1)/(cancel(6)^2))=72" "->" "q^2/2=72#

#q^2=2xx72=144#

#sqrt(q^2)=sqrt(144)#

#q=+-12#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Footnote

#(-12)xx(-12)=+144#

#(+12)xx(+12)=+144#