How do you solve #5w^2 - 11w + 10 = 0# using the quadratic formula?

1 Answer
Oct 20, 2015

Answer:

The solutions are
#x=color(blue)((11+sqrt(-79))/10#

#x=color(blue)((11-sqrt(-79))/10#

Explanation:

#5w^2-11w+10=0#

The equation is of the form #color(blue)(aw^2+bw+c=0# where:

#a=5, b=-11, c=10#

The Discriminant is given by:
#Delta=b^2-4*a*c#

# = (-11)^2-(4*5*10)#

# = 121 - 200=-79#

The solutions are found using the formula
#x=(-b+-sqrtDelta)/(2*a)#

#x = (-(-11)+-sqrt(-79))/(2*5) = (11+-sqrt(-79))/10#

The solutions are
#x=color(blue)((11+sqrt(-79))/10#

#x=color(blue)((11-sqrt(-79))/10#