How do you solve #(5x-10)/(7x+6)=10/8#?
1 Answer
I got
I would first multiply by
#(5x - 10)/(7x + 6) = 10/8#
#(8*(5x - 10))/(7x + 6) = 10/cancel(8)*cancel(8)#
#(8(5x - 10))/cancel((7x + 6))*cancel((7x + 6)) = 10*(7x + 6)#
From here, just distribute the terms, move the same types of terms to each side, and solve for
#ul(8)(ul(color(red)(5))x - ul(color(darkblue)(10))) = ul(10)(ul(color(red)(7))x + ul(color(darkblue)(6)))#
#color(red)(40)x - color(darkblue)(80) = color(red)(70)x + color(darkblue)(60)#
#-140 = 30x#
#color(blue)(x) = -140/30#
#= color(blue)(-14/3)#
And we can prove that this is correct:
#(5(-14/3) - 10)/(7(-14/3) + 6) stackrel(?" ")(=) 10/8#
#(-70/3 - 30/3)/(-98/3 + 18/3) stackrel(?" ")(=) 10/8#
#(-100/3)/(-80/3) stackrel(?" ")(=) 10/8#
#color(red)(cancel(color(black)(-)))100/color(red)(cancel(color(black)(3)))*color(red)(cancel(color(black)(-)))color(red)(cancel(color(black)(3)))/80 stackrel(?" ")(=) 10/8#
#100/80 = color(green)(10/8 = 10/8)#