How do you solve #5x + 13= 2x - 41#?

1 Answer
Mar 2, 2018

#x=-18#

Explanation:

#"collect terms in x on the left side of the equation and "#
#"numeric values on the right side"#

#"subtract 2x from both sides"#

#5x-2x+13=cancel(2x)cancel(-2x)-41#

#rArr3x+13=-41#

#"subtract 13 from both sides"#

#3xcancel(+13)cancel(-13)=-41-13#

#rArr3x=-54#

#"divide both sides by 3"#

#(cancel(3) x)/cancel(3)=(-54)/3#

#rArrx=-18#

#color(blue)"As a check"#

Substitute this value into the equation and if both sides are equal then it is the solution.

#"left "=(5xx-18)+13=-90+13=-77#

#"right "=(2xx-18)-41=-36-41=-77#

#rArrx=-18" is the solution"#