How do you solve #5x² - 6x – 3 = 0#?

1 Answer

Answer:

#x_1=6/10+(4sqrt(6))/10=3/5+(2sqrt(6))/5#

#x_2=6/10-(4sqrt(6))/10=3/5-(2sqrt(6))/5#

Explanation:

We can use the quadratic formula to solve for the roots of

#5x^2-6x-3=0#

Solution:
#5x^2-6x-3=0#

We make use of the constants #a=5# and #b=-6# and #c=-3#

Now we make use of the Quadratic formula

#x=(-b+-sqrt(b^2-4ac))/(2a)#

#x=(-(-6)+-sqrt((-6)^2-4(5)(-3)))/(2(5))#

#x=(+6+-sqrt(36+60))/(10)#

#x=(+6+-sqrt(96))/(10)#

#x=(+6+-sqrt(16(6)))/(10)#

#x=(+6+-4sqrt(6))/(10)#

#x_1=6/10+(4sqrt(6))/10=3/5+(2sqrt(6))/5#

#x_2=6/10-(4sqrt(6))/10=3/5-(2sqrt(6))/5#

God bless....I hope the explanation is useful.