How do you solve #6 (x + 1) - 5 = x + 31#?

1 Answer
Apr 28, 2017

Answer:

#x=6#

Explanation:

#" the first step is to distribute the bracket"#

#6x+6-5=x+31#

#"simplifying left side"#

#6x+1=x+31#

#"subtract x from both sides"#

#6x-x+1=cancel(x)cancel(-x)+31#

#rArr5x+1=31#

#"subtract 1 from both sides"#

#5xcancel(+1)cancel(-1)=31-1#

#rArr5x=30#

#"divide both sides by 5"#

#(cancel(5) x)/cancel(5)=30/5#

#rArrx=6#

#color(blue)"As a check"#

Substitute this value into the equation and if both sides are equal then it is the solution.

#"left side "=6(6+1)-5=42-5=37#

#"right side "=6+31=37#

#rArrx=6" is the solution"#