How do you solve #-67=-4n+3(1+6n)# using the distributive property?

1 Answer
Jun 13, 2017

#n = -5#

Explanation:

#-67 = -4n + 3(1 + 6n)#

#-67 = -4n + 3 + 18n#

#-67 color(red)(-3) = -4n color(red)(cancel(color(black)(+ 3) -3)) + 18n#

#-70 = -4n + 18n#

#-70 = 14n#

#-70/14 = (color(red)(cancel(color(black)(14)))n)/color(red)(cancel(14))#

#n = -70/14#

#color(blue)(n = -5#

Now we can substitute #n# for #-5# to prove our answer.

#-67 = -4 xx -5 + 3(1 + 6 xx -5)#

#-67 = -4 xx -5 + 3(1 + -30)#

#-67 = -4 xx -5 + 3 xx -29#

#-67 = 20 + 3 xx -29#

#-67 = 20 + -87#

#-67 = -67#