How do you solve #6x^2+3x-15=0# using the quadratic formula?

1 Answer
Aug 10, 2015

Answer:

The solutions for the equation are :
#color(blue)( x=(-3+sqrt(369))/12 #

#color(blue)( x=(-3-sqrt(369))/12 #

Explanation:

# 6x^2+3x−15=0 #

The equation is of the form #color(blue)(ax^2+bx+c=0# where:
#a=6, b=3, c=-15#

The Discriminant is given by:
#Delta=b^2-4*a*c#

# = (3)^2-(4*6*-(15))#

# = 9 + 360 = 369#

The solutions are found using the formula
#x=(-b+-sqrtDelta)/(2*a)#

#x = ((-3)+-sqrt(369))/(2*6) = (-3+-sqrt(369))/12#

The solutions for the equation are :
#color(blue)( x=(-3+sqrt(369))/12 #

#color(blue)( x=(-3-sqrt(369))/12 #