How do you solve #6x^2-8x-3=0# using the quadratic formula?
2 Answers
Note this means:
Explanation:
I suggest you commit to memory the "Quadratic Formula" it probably one of the formula that you absolutely positively must know by heart: So here is your Quadratic Formula:
Given a 2nd Order Polynomial,
Now for your equation:
Explanation:
#color(blue)6x^2# #color(darkorange)(-8)x# #color(violet)(-3)=0#
#color(blue)(a=6)color(white)(XXXXX)color(darkorange)(b=-8)color(white)(XXXXX)color(violet)(c=-3)#
#x=(-b+-sqrt(b^2-4ac))/(2a)#
#x=(-(color(darkorange)(-8))+-sqrt((color(darkorange)(-8))^2-4(color(blue)6)(color(violet)(-3))))/(2(color(blue)6))#
#x=(8+-sqrt(64+72))/12#
#x=(8+-sqrt(136))/12#
#x=(8+-2sqrt(34))/12#
#x=(2(4+-sqrt(34)))/(2(6))#
#x=(color(red)cancelcolor(black)2(4+-sqrt(34)))/(color(red)cancelcolor(black)2(6))#
#color(green)(|bar(ul(color(white)(a/a)x=(4+-sqrt(34))/6color(white)(a/a)|)))#