How do you solve #7(x-4)^2-2=54# using any method?

2 Answers
May 2, 2017

Answer:

#x=4+-2sqrt2#

Explanation:

#color(blue)"Isolate " (x-4)^2" on the left side"#

#"add 2 to each side"#

#7(x-4)^2cancel(-2)cancel(+2)=54+2#

#rArr7(x-4)^2=56#

#"divide both sides by 7"#

#(cancel(7)(x-4)^2)/cancel(7)=56/7#

#rArr(x-4)^2=8#

#color(blue)"take the square root of both sides"#

#sqrt((x-4)^2)=+-sqrt8rarr(sqrt8=sqrt(4xx2))#

#rArrx-4=+-2sqrt2#

#rArrx=4+-2sqrt2#

May 2, 2017

Answer:

#x=4+-2sqrt2#

Explanation:

#7(x-4)^2=56#
#(x-4)^2=8#
#x-4=+-2sqrt2#
#x=4+-2sqrt2#