How do you solve #7R^2 -14R + 10 = 0# using the quadratic formula?

1 Answer
Oct 25, 2015

The solutions are
#color(blue)(x= (14+sqrt(-84))/14#

#color(blue)(x= (14-sqrt(-84))/14#

Explanation:

#7 R^2 - 14R +10=0#

The equation is of the form #color(blue)(aR^2+bR+c=0# where:

#a=7, b=-14, c=10#

The Discriminant is given by:
#Delta=b^2-4*a*c#

# = (-14)^2-(4*7*10)#

# = 196 -280=-84#

The solutions are found using the formula
#x=(-b+-sqrtDelta)/(2*a)#

#x = (-(-14)+-sqrt(-84))/(2*7) = (14+-sqrt(-84))/14#

The solutions are
#color(blue)(x= (14+sqrt(-84))/14#

#color(blue)(x= (14-sqrt(-84))/14#