How do you solve #8x(2x-1)=-1# using the quadratic formula?

1 Answer
Mar 14, 2018

The answer is #x=1/4#.

Explanation:

Expand the multiplication using the distributive property:

#8x(2x-1)=-1#

#16x^2-8x=-1#

#16x^2-8x+1=0#

Using the quadratic formula :

#x=(-(-8)+-sqrt((-8)^2-4(16)(1)))/(2(16))#

#color(white)x=(8+-sqrt(64-64))/(32)#

#color(white)x=(8+-sqrt(0))/(32)#

#color(white)x=(8+-0)/(32)#

#color(white)x=8/32#

#color(white)x=1/4#

That is the solution, hope this helped!