# How do you solve 9- 16\cdot \frac{2^{2} - 1^{3}}{2( - 4)} - 8\div 2?

Aug 28, 2017

$11$

#### Explanation:

$\text{when evaluating expressions with "color(blue)"mixed operations}$
$\text{there is a particular order that must be followed}$

$\text{follow the order as set out in the acronym PEMDAS}$

[P-parenthesis (brackets), E-exponents (powers), M-multiplication, D-division, A- addition, S-subtraction ]

$\text{multiplication/division have equal precedence so when}$
$\text{they occur in the same expression evaluate from left}$
$\text{to right. This is also the case with addition/subtraction}$

$9 - 16 \times \frac{{2}^{2} - {1}^{3}}{2 \left(- 4\right)} - 8 \div 2$

$= 9 - {\cancel{16}}^{-} 2 \times \frac{4 - 1}{{\cancel{- 8}}^{1}} - 8 \div 2 \leftarrow \textcolor{red}{\text{P/E}}$

$= 9 - \left(- 2 \times 3\right) - 8 \div 2 \leftarrow \textcolor{red}{\text{ tidy up fraction}}$

$= 9 - \left(- 6\right) - 4 \leftarrow \textcolor{red}{\text{ multiplication/division}}$

$= 9 + 6 - 4 \leftarrow \textcolor{red}{\text{ evaluate left to right}}$

$= 11$