# How do you solve -9=(-4+m)/2?

Dec 22, 2016

$m = - 14$

#### Explanation:

First, multiply each side of the equation by $2$ to eliminate the fraction and to keep the equation balanced. Eliminating the fraction will make the problem easier to work with:

$\textcolor{red}{2} \times - 9 = \textcolor{red}{2} \times \frac{- 4 + m}{2}$

$- 18 = \textcolor{red}{\cancel{\textcolor{b l a c k}{2}}} \times \frac{- 4 + m}{\textcolor{red}{\cancel{\textcolor{b l a c k}{2}}}}$

$- 18 = - 4 + m$

Now, we can isolate the $m$ term and solve for $m$:

$- 18 + \textcolor{red}{4} = - 4 + m + \textcolor{red}{4}$

$- 14 = - 4 + 4 + m$

$- 14 = 0 + m$

$- 14 = m$

Dec 22, 2016

$m = - 14$

#### Explanation:

Given
$\textcolor{w h i t e}{\text{XXX}} - 9 = \frac{- 4 + m}{2}$

If we multiply both sides by $2$ we can get rid of the fraction on the right side:
$\textcolor{w h i t e}{\text{XXX}} - 9 \textcolor{b l u e}{\times 2} = \frac{- 4 + m}{\cancel{2}} \textcolor{b l u e}{\times \cancel{2}}$

$\textcolor{w h i t e}{\text{XXX}} - 18 = - 4 + m$

Now adding $4$ to both sides will isolate the constant on one side and the variable on the other side:
$\textcolor{w h i t e}{\text{XXX}} - 18 \textcolor{red}{+ 4} = \cancel{- 4} + m \textcolor{red}{+ \cancel{4}}$

$\textcolor{w h i t e}{\text{XXX}} - 14 = m$

or (in the more common order)
$\textcolor{w h i t e}{\text{XXX}} m = - 14$