How do you solve #a^x = 10^(2x+1)#?
1 Answer
Apr 5, 2016
Explanation:
#a^x=10^(2x+1)#
#log(a^x)=log(10^(2x+1))#
#xlog(a)=(2x+1)log(10)#
#xlog(a)=2xlog(10)+log(10)#
#2xlog(10)-xlog(a)=-log(10)#
#x(2log(10)-log(a))=-log(10)#
#color(green)(|bar(ul(color(white)(a/a)x=(-log(10))/(2log(10)-log(a))color(white)(a/a)|)))#