Let #f(x)=x(x-2)(x+1)#
Now, we build the sign chart
#color(white)(aaaa)##x##color(white)(aaaaa)##-oo##color(white)(aaaa)##-1##color(white)(aaaa)##0##color(white)(aaaaaa)##2##color(white)(aaaa)##+oo#
#color(white)(aaaa)##x+1##color(white)(aaaaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##+##color(white)(aaaa)##+#
#color(white)(aaaa)##x##color(white)(aaaaaaaaaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##+#
#color(white)(aaaa)##x-2##color(white)(aaaaaaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##+#
#color(white)(aaaa)##f(x)##color(white)(aaaaaaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##-##color(white)(aaaa)##+#
Therefore,
#f(x)>0# when #x in ]-1, 0[uu]2, +oo[#