How do you solve #cos^2 x - 4 cos x = 1# over the interval 0 to 2pi?

1 Answer
Apr 5, 2016

#103^@65 and 256^@35#

Explanation:

#f(x) = cos^2 x - 4cos x - 1 = 0#
#D = d^2 = b^2 - 4ac = 16 + 4 = 20# ---> #d = +- 2sqrt5#
There are 2 real roots.
#cos x = -b/(2a) +- d/(2a) = 4/2 +- 2sqrt5/2 = 2 +- sqrt5#

a . #cos x = 2 + sqrt5# (Rejected because > 1)
b. #cos x = 2 - sqrt5 = 2 - 2.24 = - 0. 24# -->#x = +- 103^@65#
Answer for #(0, 2pi):#
#103^@65 and 256^@35# (co-terminal to - 103.65)