#"please remember that " cos (a-b)=cos a*cos b+sin a* sin b#
#cos (theta/3-pi/4)=cos theta*cos pi/4+sin theta*sin pi/4#
#cos pi/4=sin pi/4=sqrt2/2#
#cos((theta/3)-pi/4)=cos (theta/3)*sqrt2/2+sin( theta/3)*sqrt2/2#
#cos(theta/3)*sqrt2/2+sin (theta/3)*sqrt2/2=1/2#
#sqrt2/2(cos (theta/3) +sin (theta/3))=1/2#
#cos (theta/3)+sin (theta/3)=1/cancel(2)*cancel(2)/sqrt2#
#cos ( theta/3) +sin (theta/3)=1/sqrt2" ; "1/sqrt2=sqrt2/2#
#cos (theta/3)+sin (theta/3)=sqrt2/2#
#[cos (theta/3)+sin (theta/3)]^2=[sqrt2/2]^2#
#cos^2(theta/3)+2*sin(theta/3)*cos(theta/3)+cos^2(theta/3)=1/2#
#"so ;" cos^2 a+sin^2 a=1;#
#cos^2(theta/3)+sin^2(theta/3)=1#
#1+2*sin(theta/3)*cos(theta/3)=1/2#
#2*sin(theta/3)*cos(theta/3)=1/2-1#
#2*sin(theta/3)*cos(theta/3)=-1/2#
#"so ; "2*sin a*cos a=sin(2*a)#
#2*sin(theta/3)*cos(theta/3)=sin((2*theta)/3)#
#sin((2theta)/3)=-1/2#
#(2theta)/3=-30^o#
#2theta=-90#
#theta=-45 ^o#