How do you solve #cos x = sin 2x#, within the interval [0,2pi)?
1 Answer
Apr 9, 2016
Explanation:
Using the
#color(blue)" double angle formula " # sin2A = 2sinAcosA
hence: cosx = 2sinxcosx
and 2sinxcosx - cosx = 0
take out the common factor cosx
cosx( 2sinx - 1 ) = 0
We now have : cosx = 0 or 2sinx - 1 = 0 →
# sinx = 1/2 # solve : cosx = 0
# rArr x = pi/2 , x = (3pi)/2 # solve
# sinx = 1/2 rArr x = pi/6 , x = (5pi)/6 # In the interval
# [ 0 , 2pi ) # solutions are
#color(red)(|bar(ul(color(white)(a/a)color(black)(pi/6 ,pi/2 , (5pi)/6 , (3pi)/2)color(white)(a/a)|)))#