How do you solve #cosx-sinxsin2x=0#?

1 Answer
Sep 13, 2016

#0, pi/4, (3pi)/4, (5pi)/4, (7pi)/4, 2pi#

Explanation:

Use trig identity:
sin 2x = 2sin x.cos x.
Substitute this value into the equation:
cos x - sin x (2sin x.cos x) = 0.
Put cos x into common factor:
#cos x(1 - 2sin^2 x) = 0#
Solve it by using trig table and unit circle:

a. cos x = 0 --> x = 0 and #x = 2pi#
b. #(1 - 2sin^2 x) = 0#
#sin^2 x = 1/2#
#sin x = +- 1/sqrt2 = +- sqrt2/2#
c. #sin x = sqrt2/2# --> #x = pi/4 and x = (3pi)/4#
d. #sin x = -sqrt2/2# --> #x = - pi/4 and x = -(3pi)/4#
Arc #(-pi/4)# is co-terminal to arc #(7pi)/4#
Arc #((-3pi)/4)# is co-terminal to arc #((5pi)/4)#
Answers for #(0, 2pi)#
#0, pi/3, (3pi)/4, (5pi)/4, (7pi)/4, 2pi#