How do you solve #\csc \theta -\sin \theta =\cos \theta \cot \theta#?

1 Answer
Jan 27, 2017

Note that this is an identity, not an equation, so we attempt to prove and not to solve.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Rewrite using the following fundamental identities:

#cscbeta = 1/sinbeta#
#cotbeta = 1/tanbeta = 1/(sinbeta/cosbeta) = cosbeta/sinbeta#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#1/sintheta - sin theta = costheta * costheta/sintheta#

#(1 - sin^2theta)/sintheta = cos^2theta/sintheta#

Simplify using #sin^2beta + cos^2beta = 1 -> cos^2beta = 1- sin^2beta#

#cos^2theta/sintheta = cos^2theta/sintheta#

Identity proved!

Hopefully this helps!