How do you solve #e^(-0.005x) = 100 #?

1 Answer
Apr 17, 2018

#color(blue)(x=-ln(100)/0.005~~-921.0340372)#

Explanation:

By the laws of logarithms:

#log_a(b^c)=clog_a(b)#

#log_a(a)=1#

#e^(-0,005x)=100#

Taking natural logarithms of both sides:

#-0.005xln(e)=ln(100)#

From above:

#-0.005x=ln(100)#

#color(blue)(x=-ln(100)/0.005~~-921.0340372)#