How do you solve for v in #u(v+2) + w(v-3) = z(v-1)#?

1 Answer
Feb 25, 2017

#v=(3w-z-2u)/(w-z+u)#

Explanation:

Method:

Multiply out the brackets.
All terms with #v# in on the left. All other terms on the right
Factor out #v#
Rearrange so that #v# is on its own.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#uv+2u+wv-3w=zv-z#

#uv+wv-zv=3w-z-2u#

#v(u+w-z)=3w-z-2u#

#v=(3w-z-2u)/(w-z+u)#