How do you solve for x: #12/x+3/4=3/2#?

2 Answers

Answer:

#x=16#

Explanation:

Solution 1.

By inspection of the equation #12/x+3/4=3/2#

We know that #3/4+3/4=3/2#, and #12/16=3/4#.
Therefore, #x=16#

Solution 2.

By Algebraic procedure

#12/x+3/4=3/2#

Multiply both sides of the equation by #x#

#x(12/x+3/4)=(3/2)x#

#12+(3x)/4=(3x)/2#

#12=(3x)/2-(3x)/4#

#12=(6x-3x)/4#

#12=(3x)/4#

#x=(12*4)/3#

#x=16#

God bless....I hope the explanation is useful.

Jul 16, 2016

Answer:

#x=16#

Explanation:

In an equation which has fractions, we can get rid of the denominators by multiplying all the terms by the LCM of the denominators.

#12/x+3/4=3/2" LCM " =color(magenta)(4x)#

#(color(magenta)(4x)xx12)/x+(color(magenta)(4x)xx3)/4=(3xxcolor(magenta)(4x))/2#

#(color(magenta)(4cancelx)xx12)/cancelx+(color(magenta)(cancel4x)xx3)/cancel4=(3xxcolor(magenta)(cancel4^2x))/cancel2color(magenta)#

#48 +3x = 6x#

#48 = 3x#
#x = 16#